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Abstract. Below Tc, cordierite shows an unusual domain pattern consisting of walls which are
not well oriented along elastic soft directions. This is due to a low spontaneous strain and low
anisotropy energies. As a result of this, short-ranging interactions normally negligible compared to
strain energies become important and there is a competition between two types of wall: those due
to strain and those due to local interactions. This leads to the formations of ‘sandwich walls’, which
represent a compromise between these two wall types, becoming energetically favourable. Here
we simulate the formation of sandwich walls using an atomistic computer model. The sandwich
walls are shown to be chiral in nature with a vector order parameter rotating as we move through
the wall. The chirality direction is fixed since the two chirality types are not degenerate. The
sandwich wall trajectories are similar to what would be expected from symmetry-adapted Ginzburg–
Landau theory. The sandwich ‘filling’ appears in two shapes: a thick, well defined domain at low
temperatures and a thin layer of wetting at higher temperatures. The latter is reminiscent of surface
segregation phenomena.

1. Introduction

Below a critical temperature,Tc, most ferroelastic materials show the formation of domain
patterns. The walls between adjacent domains tend to be aligned along elastic soft directions
such that the elastic strain tensors in the adjacent domains are compatible without the formation
of secondary strain fields [1–3]. In most ferroelastics, this tendency is very strong with almost
all walls located along such soft directions. These walls tend to be very straight and clearly
defined with little deviation from the soft direction.

Cordierite, on the other hand shows a very complex, patchy microstructure with poorly
defined wiggly domain walls and blunt needle domains [4,5]. Although there is a tendency for
walls to align along soft directions, this appears to be much weaker than in other ferroelastics
and some walls are observed which are not along elastically soft directions. These walls do,
however, seem to be alongparticular directions. In a previous paper [6] we suggested a
mechanism by which this type of ordering could occur based on short-ranging interactions
between cordierite’s characteristic sixfold tetrahedral ring structure. This mechanism involves
local, topological interactions which are usually masked out in ferroelastics due to the
strong, long-ranging elastic interactions which are themselves independent of detailed atomic
structure. They assume a greater importance in cordierite due to its weak elastic interactions
and small spontaneous strain.

There are, then, two types of competing wall formation in cordierite, strain-mediated
elastic walls and topological walls which result from local interactions. One can therefore
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imagine a low-energy wall configuration which would satisfy cordierite’s tendency to form
topological walls on a short scale but strain walls on a higher length scale. We call such a
wall asandwich wall. Viewed from a distance, it appears to be a simple strain wall but closer
inspection reveals additional ‘decoration’ inside the wall such that the actual interfaces that
form inside the ‘wall’ are two topological walls. We will describe the detail of this structure in
the next section. Since such sandwich walls have a low energy it is possible that many walls
in cordierite which appear to be strain walls when viewed under an optical microscope are in
fact these sandwich walls.

In this paper we use a computer simulation to model domain formation in cordierite
and show how both strain and topological walls can form. We then consider the particular
case of a sandwich wall in detail at different temperatures. These computational results are
then compared with the theoretical results of Ginzburg–Landau theory giving us a better
understanding of the mechanisms involved. In the GL theory we can describe the wall shape
using a vector order parameter,Q, which rotates inQ-space as we move through the wall. The
precise direction of rotation dictates thechirality of the wall and the nature of such chiral walls
has been studied in the past often on a purely abstract level [7]. In this paper we reconcile the
sandwich wall shapes (whose chirality has a direct physical meaning) with such analyses.

2. Cordierite structure

The structure of cordierite is illustrated in figure 1 [8]. It consists of two types of oxygen
tetrahedron called T1 and T2. The T2 tetrahedra form layers of six-membered rings. In each
unit cell there are two layers of T2 rings with the rings in alternate layers rotated by 30◦ with
respect to each other. The T1 tetrahedra form ‘ladders’ connecting these T2 layers. There are
also oxygen octahedra present between the T1 tetrahedra with Mg atoms at their centres. Al
or Si atoms are present in each tetrahedron and the precise configuration of Al/Si dictates the
ordering of the crystal. Hence these atoms are calledordering atomsand the remainder of the
lattice (comprising O and Mg atoms) is called thehost lattice.

1
3

2

T1

T1

x

y

T2

Figure 1. The numbering system used to indicate Al opposite pair configurations in each ring.
The axes shown are used throughout. The two types of T2 ring per unit cell are shown as solid and
dashed lines. They are each made up of T2 tetrahedra shown here as triangles. The Al positions
are shown as black and white circles respectively. Other tetrahedra have Si atoms at their centres.

Al atoms are physically larger than Si atoms and so, when Al are present, they cause their
tetrahedra to swell up distorting the host lattice. These distortions propagate throughout the
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crystal and apply forces on other ordering atoms. So ordering atoms interact with each other
indirectly via the host lattice.

Domain formation occurs when each T2 ring contains two Al and four Si atoms and the
Al atoms are aligned on opposite sides of the ring. There are three ways of having this type of
order and so there are three types of domain. Each ring has a domain type associated with it
which we will denote by a number 1, 2 or 3. We will call this number thering spinsince it is
analogous with spins found in ferromagnetic materials. In using this nomenclature we reduce
the system to a three-state Potts model in three dimensions [9,10].

There is a tendency to exclude two Al from being present in adjacent tetrahedra
(Loewenstein’s rule [11]), so the ‘spin’ of a ring indicates the configuration of ordering atoms
in that T2 ring and also in thesurroundingring of T1 tetrahedra. Thus the configuration of all
ordering atoms in the crystal can be specified by stating the ring spin configuration. The three
types of ring ordering are illustrated in figure 1. Notice how the Al opposite pairs in the two
types of T2 ring are aligned next to each other such that the Al-bearing T2 sites on each side
of the ring are connected by T1 tetrahedra. The diagram also shows how T2 tetrahedra with
Al present swell up, distorting the T2 ring into an elliptical shape with one axis along the Al
opposite pair direction.

Cordierite undergoes a phase transition from hexagonal (P6/mcc) to orthorhombic
(Cccm) structure. The spontaneous strain has the symmetry of the active representation (E2g)
and is given by

e = e
( 1 0 0

0 −1 0
0 0 0

)
(1)

with respect to the strain’s principal axes in each of the three domain types. This strain is just
what one would expect from the ring distortion shown in figure 1.

When two domains come together, the interface is called adomain wall. If the wall is
strain mediated, its orientation must be such that the strain a small distance away from the wall
is the same in both adjacent domains [1–3]. Using this condition for a hexagonal/orthorhombic
system, six walls of fixed direction perpendicular to the T2 planes are obtained; these are listed
in table 1.

Table 1. Six walls of fixed direction perpendicular to the T2 planes.

Domain pair Wall 1 angle Wall 2 angle

1–2 0 + 90◦

1–3 + 60◦ −30◦

2–3 −60◦ + 30◦

These walls are shown schematically in the lower part of figure 2. As required by strain
interactions, there are two mutually orthogonal walls for each domain pair. Structurally, the
strain wall directions are located halfway between the Al opposite pair orientations. The
diagram also shows the topological wall directions. The topological walls are located along
the Al opposite pair directions.

A sandwich wall consists of two domains which would form a strain wall if directly
connected but with a slice of the other domain type in between, so the actual domain interfaces
are topological in nature. Figure 3 illustrates such a wall.
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Figure 2. The six strain walls and six topological walls observed in the simulation. A T2 ring is
present at each line intersection in the diagram. The double-headed arrows indicate the direction of
alignment of the opposite pairs of Al in the rings. In fact the actual Al positions are rotated by±15◦
with respect to the arrow direction for the two non-equivalent T2 layers shown in figure 1. The
arrow is drawn halfway between these two orientations and also corresponds to the strain direction.
The dashed lines indicate the wall directions.
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Figure 3. A sandwich wall. The circles are type 1 ring spins, crosses are type 2 and type 3 are not
shown (white).

3. Computer model

In the computer model, we simulate a structure which is the direct analogue of cordierite but
in 2D. As strain interactions are rather well reproduced in 2D, it is only the local interactions



Sandwich domain walls in cordierite 4751

which may be oversimplified in this representation.
Looking at the 3D structure defined in figure 1, we imagine rotating the two types of T2

ring together and, at the same time, compressing them into a 2D sheet as shown in figure 4. The
T2 tetrahedra become triangles and the T1s become single lines connecting the T2 tetrahedra
in neighbouring rings.
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Figure 4. The 2D structural model. The lines represent springs connecting oxygen atoms. This
sample consists of a single type 3 domain and we can see that the T2 triangles containing Al are
swollen with a consequent distortion of the rings causing the crystal to lose symmetry and become
orthorhombic. The model used in the simulations has 32 rings on a side of the hexagonal sample
rather than the 3 shown here.

As stated in the previous section, we can identify two distinct sublattices in cordierite,
the host lattice (consisting of O and Mg atoms) and the ordering lattice (consisting of Al and
Si atoms). In the computer model, the host atoms interact via harmonic forces (i.e. they are
connected by springs). The ordering atoms interact with the host atoms by applying constant
Kanzakiforces on the host atoms depending on which type of ordering atom is present. Since
Al atoms are larger than Si atoms, we model this interaction by saying that Al atoms apply
outward forces on oxygen atoms in their tetrahedra while Si atoms apply no forces. The direct
interaction between ordering atoms is assumed to negligible in this simulation and is set at
zero.

The connectivity and strength of springs must be chosen to give the right interactions
between host atoms. These springs are shown as lines in figure 4. The tetrahedra in these
ferroelastic materials are known to be rather rigid and so the oxygen atoms at the vertices of
the T2 triangles are connected together using relatively strong springs (k = 100 relative units).
When Kanzaki forces are applied to the oxygens at the edges of these tetrahedra, they swell
up until the restoring force due to these springs equals the Kanzaki force.

The line which is all that remains of the T2 rings is also expressed as a spring (k = 100
relative units). In this form, the T2 ring would be very floppy and we expect it to behave as
a fairly well defined rigid unit, so additional springs (k = 50 relative units) are added inside
and outside the ring to stabilize its structure. Finally, some additional springs are connected
between rings to increase the ring–ring interaction (k = 200 relative units). The resulting
system is shown in figure 4.

This simulation incorporates all of the physical mechanisms believed to be important in
cordierite ordering: the swelling of ‘tetrahedra’ (now triangles) in the presence of Al, the
consequent distortion of the T2 rings into ellipses and the interaction between distorted rings
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which causes strain and hence ordering.
The Hamiltonian of this system can be written as

H = Hhost +Hint (2)

whereHhost is the energy of the host-atom–host-atom interactions andHint is the energy of
the ordering-atom–host-atom interactions due to the Kanzaki forces applied [12]. We assume
that ordering-atom–ordering-atom interactions are irrelevant to the total energy.

Because we are using simple spring bonds for the host lattice, we can writeHhost as

Hhost =
∑
bonds

1

2
kbond(δr)

2 (3)

whereδr is the stretching of a bond andkbond is the spring constant. The sum is over all bonds
in the host lattice. Using the formalism of the dynamical matrix we can rewrite this as

Hhost = 1

2
uTAu = 1

2

∑
nm

∑
ij

uinA
ij
nmu

j
m (4)

with the first expression written in matrix format (the matrices must be appropriately partitioned
so as to include the indicesn,m, i, j ). uin is theith displacement component of atomn and
A
ij
nm represents the spring interaction between theith andj th displacement components of

atomsn andm.
The force on each host atom,n, denotedf in (with i corresponding to the Cartesian

component) is given by

f in =
∑
lα

F iαnl p
α
l (5)

wherepαl , the so-called occupation number, indicates the presence or absence of an ordering
atom of typeα at sitel such thatp = 1 if the atom is present andp = 0 if the spin is absent.
In cordierite, we takep1

l = 1 for an Al andp0
l = 1 for a Si at sitel. The matrix elementF iαnl

represents theith component of the force applied to host atomn when an ordering atom of
typeα is present at sitel. The matrixF therefore gives the set of Kanzaki forces.

Since the Kanzaki forces are constant, we can now write the total Hamiltonian as

H = 1

2
uTAu− uTFp = 1

2

∑
nm

∑
ij

uinA
ij
nmu

j
m −

∑
nl

∑
i

∑
α

uinF
iα
nl p

α
l . (6)

The evolution of the ordering-atom configuration is modelled using the standard Metropolis
algorithm of Monte Carlo analysis, changes of ring spins (which correspond torotating pairs
of Als) are attempted and the attempts accepted with probability

p(1E) = exp(−1E/kBT )
1 + exp(−1E/kBT ) . (7)

Thus the system performs a ‘random walk’ from its initial configuration. Making use of the
ergodic nature of the system, we can take the evolution of the system as it ‘walks’ to correspond
to its time evolution. The number of Monte Carlo steps,tMC , is related to the real time elapsed,
t , by

t = tMC exp(Ea/kBT ) (8)

whereEa is some characteristic activation energy of the Monte Carlo interchange. Thus a
sequence of spin-configuration snapshots represents the time evolution of the system.

In the computer simulation we are only interested in the motion of the ordering atoms
since these dictate domain formation. The host atoms are necessary only as an elastic medium
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with the required stiffness and geometry to cause the correct interactions between ordering
atoms. In order to express this interaction most clearly, we allow the host lattice to relax to its
minimum-energy configuration between changes of ring spins. This also allows us to eliminate
the host-atom displacements from equation (6) and hence reduce the model to a Potts model.

Minimizing (6) with respect to atomic displacements gives

∂H

∂uin
= (Au− Fp)in = 0 (9)

which leads to the matrix of relaxed displacements:

(u0)
i
n = (A−1Fp)in. (10)

Substituting this back into (6) yields

H0 = 1

2
pTVp (11)

with

V
αβ

lk = −(FTA−1F)αβlk . (12)

This is the Hamiltonian used in the simulation. It is formally the same as that of a Potts model
with a complex interaction termV. While in nearest-neighbour Potts models most elements
of V are zero,noneof the elements are zero in our simulation. In fact, the interaction can be
shown to decrease asR3 whereR is the distance between ordering atoms, so it is indeed long
ranging as we expect. The anisotropy of the interaction of the system can also be derived from
an analysis of equation (11) [13].

One way to calculate the energy differences required for the Metropolis algorithm would
be to calculate the tensorV from the springs and Kanzaki forces of the system. However,
the number of atoms considered in these simulations is large (of order 104) and the size of
the dynamical matrixA is (dN)2 whered is the dimensionality andN the number of host
atoms. It is impractical to invert such a large matrix and so Newtonian molecular dynamics
with damping is used to move the host atoms to their lowest energy positions and minimize
the energy in equation (6).

The most straightforward way to proceed would be to calculate the energy for a relaxed
system (using molecular dynamics), interchange ordering atoms, recalculate the energy and
subtract to get the energy change for equation (7). However, the relaxation process for such
a large number of atoms is very computationally intensive and doing two relaxations per
interchange requires too long a computational time.

Instead of calculating1E directly, we calculate the quantity

1Ẽ = −u0F1p (13)

whereu0 is the set of relaxed host-atom displacements corresponding to an initial ring spin
configuration and1p is the difference in the ring spin due to one Monte Carlo interchange.
This quantity turns out to be related to1E by

1E = 1Ẽ + δ (14)

whereδ is the so-calledenergy correction. It is a constant which depends only the structure
of the model.

From a comparison of equations (11) and (13), it can be shown thatδ can be calculated
from the following configurations. If we consider a particular ring at the centre of a hexagonal
sample and imagine that the rest of the lattice apart from this ring contains no ordering atoms
(and so no Kanzaki forces are applied to the atoms in other rings), thenE0 is the relaxed energy
of a single Al placed at any of the six sites in this ring (all six sites are symmetrically identical).
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E1 is the energy of two Als placed next to each other in the ring;E2 is the energy of two Als
placed nextbut oneto each other andEopp is the energy of two Als placed opposite each other
(just like in an ordered system). The energy correction can then be shown to be given by

δ = 8E0 + 2Eopp − 2E1− 2E2 (15)

and this quantity was calculated at the outset and used in each simulation presented here.
The computer algorithm then operates as follows: the host lattice is relaxed,all Monte

Carlo changes in the lattice are attempted at once and the process is repeated. Thus all of the
ring spins can be changed for a single host-lattice relaxation.

We use free boundary conditions throughout rather than the more usual periodic boundaries
because the latter tend produce a spurious periodicity in the spin configurations generated by
the simulation. Periodic boundaries also prevent the formation of large-wavelength stretching
modes in the host lattice, which we expect to be important due to the long-ranging nature of
the elastic interaction.

The computer programs were run on the Hitachi S-3600 vector computer, part of the
Cambridge University High Performance Computing Facility.

4. Computer results from a random configuration

To establish at which temperatures to run the simulation, we must first calculateTc. This is
done by defining a vector,q, for each ring spin:

qi = (cos[(2π/3)(si − 1)], sin[(2π/3)(si − 1)]) (16)

wheresi is the ring spin value as defined in figure 1. The order parameter is now given as the
ensemble-averaged normalized magnetization:

Q = 〈Qm〉 (17)

Qm = 1

N

∣∣∣∣∣∑
i

qi

∣∣∣∣∣ . (18)

In practice the system is ergodic, so we calculate the Monte Carlo average ofQm rather than
an ensemble average. Figure 5 shows a plot ofQ(T ) for several temperatures; in each case
the magnetization is averaged over 1000 Monte Carlo steps per ring spin which gives a good
convergence. We see that the order parameter remains very close to 1 up to quite close to the
critical temperature,Tc, and then rapidly decreases to zero. This sharp cut-off is reminiscent of
(T −Tc)1/8 curves resulting from nearest-neighbour Ising models, showing that short-ranging
interactions (which will yield the topological walls) have a strong effect on ordering. Also
shown on the graph is corresponding plot of the order parameter for a simple model with one
atom per unit cell which was also simulated. This latter plot is close to the(T − Tc)1/2 curve
corresponding to a second-order ferroelastic transition with a 2–4 Landau potential [14]. Thus,
it is thestructureof the T2 rings in unit cells considered in our computer model which yields
the local interactions resulting in topological walls.

It would also appear that the cordieriteQ(T ) plot is closer to a first-order curve than that
of the one-atom model. Indeed cordierite has been experimentally observed to show a strong
first-order phase transition. However, the accuracy of these results is probably not sufficient
to distinguish between first- and second-order transitions so we will merely conclude from
this graph that the structure of the T2 rings causes short-ranging interactions to become more
important.

Throughout this paper we will plot order parameters as functions of temperature, including
those derived from Landau theory, all the way down toT = 0 (and for consequently high
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Figure 5. A Q(T ) plot for a cordierite simulation (crosses). For comparison, the order parameter
of a simple computer model with one atom per unit cell and the same symmetry properties as
cordierite is also plotted. The latter curve is similar to a(T − Tc)1/2 curve corresponding to a
second-order ferroelastic transition with a 2–4 Landau potential. The cordierite plot shows a much
sharper cut-off than this, which seems to indicate the importance of short-ranging interactions.

values of the order parameters). Strictly speaking, of course, Landau theory is only valid
aroundT = Tc and for low values of the order parameter. However, Landau theory has been
shown experimentally to be valid over a surprisingly large range of order parameter values
(up toQ = 0.9) for various crystals [14] and here we shall assume, for convenience, that itis
applicable over all temperatures.

Figure 6 shows the time evolution of the cordierite ring spin configuration from an initial
random configuration. We see that domains form and rapidly grow with large domains growing
at the expense of smaller ones until the sample consists of only three domains, one of each
type. Such a configuration is known as trilling. This aggressive coarsening tendency is
very characteristic of cordierite. Whereas other materials, such as YBCO, tend to display ‘bar-
code’ patterns of alternating domains [13,15,16], we see that the simulation never displays this
pattern; rather the configuration consists of patchy, irregular domains. This distinction between
cordierite and other ferroelastics is present both in our computer simulation compared with
computer simulations of these materials and in experimental TEM comparisons of cordierite
with these materials. This indicates that the physical process which makes cordierite so unusual
has been captured in our simulation.

Looking at the domain walls now, we see that topological walls are dominant on the small
length scales associated with short annealing times. For example, in the first snapshot, at
t = 10 MCSPS, the domains are small and the configuration is entirely made up of topological
walls. Later, as coarsening proceeds, the strain walls begin to assert themselves and the large
vertical 1–2 wall att = 2000 MCSPS is a strain wall. Some topological walls are still present,
however, even at these later times, such as the 1–2−60◦ wall at t = 100 and the horizontal
2–3 wall att = 2000 MCSPS.

We can see some evidence of wetting along strain-mediated walls. For example, the
horizontal 1–2 strain wall to the right oft = 150 MCSPS is peppered with type 3 ring spins,
giving rise to 1–3 and 3–2 topological domains on a local scale. This wall structure is exactly
what we expect for a sandwich wall. The vertical 1–2 wall att = 2000 MCSPS is also wetted
by type 3 ring spins.
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Figure 6. Time (i.e. Monte Carlo) evolution of the system from a random configuration belowTc.
Both strain and topological walls are formed.

5. Sandwich walls

In order to understand the behaviour of sandwich walls in more detail, the initial configuration
was set to correspond to a sandwich wall precisely as shown in figure 3. The computer
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programme was then run at different temperatures. However, rather than simply plotting
snapshots such as in figure 6, we now use Ginzburg–Landau theory to gain an understanding
of what wall shape is expected.

5.1. Ginzburg–Landau theory

For a symmetry reduction from hexagonal to orthorhombic, the point group of the crystal
lattice reduces from 6/mmm tommm and the active representation is E2g. In such a case, the
expected form of the Landau potential is given by [17]

G = 1

2
A(q2

1 + q2
2) +

1

3
B(q2

1 + q2
2)

3/2 cos

(
3 tan−1 q1

q2

)
+

1

4
C(q2

1 + q2
2)

2. (19)

It depends on two components of the order parameter,q1 andq2. In the simulation, we
only allow orthorhombic cordierite to form (i.e., the ordering-atom configuration is always
one of the three possibilities shown in figure 1). This constraint corresponds to settingB very
high in the above equation. Thus, the free energy of the system is minimized when the second
(angular) term is minimized. This happens when the cosine is equal to−1 which occurs when
q1/q2 is given by±√3 or 0. This gives three possible values of the (normalized) vector order
parameterq:

q = (q1, q2) = (0, 1), (±
√

3/2,−1/2) (20)

which correspond to the three domains that we can observe. Looking at the three strains for
such domains using the numbering system of figure 1, with respect to the indicated axes:

e1 = e
(−1/2

√
3/2 0√

3/2 1/2 0
0 0 0

)

e2 = e
( −1/2 −√3/2 0
−√3/2 1/2 0

0 0 0

)

e3 = e
( 1 0 0

0 −1 0
0 0 0

)
(21)

we see that the order parameters are simply the reduced spontaneous strain components,e11/e

ande12/e, with

e11/e = q2 = sin(π/2− 2π/3s)

e12/e = q1 = cos(π/2− 2π/3s)
(22)

wheres is the ring spin value as used in figure 1. Thus, the order parameters for a ring can
be calculated from its spin value. As we go through the wall in thex-direction indicated in
figure 3, we see that the variation of the order parameters is as shown in figure 7. In a real wall
it is expected that gradient energies will smooth off the order parameter profiles. Also shown
are the normalized order parameters,Q1 andQ2, which are given by

Q1 = (2/
√

3)q1 Q2 = (2/3)(q2 + 1/2) (23)

which give values ofQ = (Q1,Q2) = (±1, 0), (0, 1) for the three stable bulk configurations
expected.

Since the coefficient ofB in equation (19) is always set to−1, we can defineG′ = G+B
and write this out as

G′ = 1

2
Aq2

1 +
1

4
Cq4

1 +
1

2
Aq2

2 +
1

4
Cq4

2 +
1

2
Cq2

1q
2
2 (24)
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Figure 7. A schematic diagram of the sandwich wall profile in the order parameters.

which is a standard 2–4 potential inq1 andq2 with a biquadratic coupling term. There are
only two coefficients,A andC, because of symmetry constraints. In addition, we now add
Ginzburg terms to provide a gradient energy and integrate the free-energy density to give the
total free energy:

G′ =
∫ [

1

2
Aq2

1 +
1

4
Cq4

1 + γ1

(
∂q1

∂x

)2

+
1

2
Aq2

2 +
1

4
Cq4

2 + γ2

(
∂q2

∂x

)2

+
1

2
Cq2

1q
2
2

]
dx (25)

wherex is a coordinate perpendicular to the wall as indicated in figure 3. In writing the
Ginzburg term in this simple way (as a scalar field), we assume that the wall is flat with no
twisting.

Firstly, we consider a uniform distribution in which the above gradient terms are zero. It
is necessary to find the set of parametersA, C etc which give rise to the bulk values ofq1 and
q2 at T = 0. From figure 7 these values are

√
3/2 and−1/2 respectively. To explore phase

space more thoroughly, we generalize equation (25):

G′ = 1

2
A1q

2
1 +

1

4
C1q

4
1 +

1

2
A2q

2
2 +

1

4
C1q

4
2 +

1

2
C2q

2
1q

2
2 . (26)

Minimizing this equation gives four solutions forq: (q1 = 0, q2 = 0), (q1 6= 0, q2 = 0),
(q1 = 0, q2 6= 0), (q1 6= 0, q2 6= 0). Clearly the latter is the one which corresponds to the
required ground state. It turns out that the required value ofq, =(√3/2, 1/2), is obtained
when

A1 = −(1/4)(C2 + 3C1)

A2 = −(1/4)(3C2 +C1).
(27)

These parameters give rise toq1 =
√

3/2, q2 = −1/2 as one minimum. However, the energy
of this minimum will only be less than those of the other minima ifC2 < C1, as can be
shown by calculating the energies of the four minima of equation (26). IfC2 > C1, then the
q1 = 0, q2 6= 0 phase has a lower energy. At the critical point whereC2 = C1 = C, we see that
A1 = A2 = A = −C1 gives the required minimum and this also corresponds to equation (25),
with the fixed coefficients which we derived from group theory. However, this critical point
is a borderline case and in practice it is necessary to perturbA1 andA2 slightly away fromA
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andC1 andC2 away fromC:

A1 = A + δA1

A2 = A + δA2

C1 = C + δC1

C2 = C + δC2

(28)

in order to be able to realize the correct ground state. This perturbation implies that the system
is somewhat less than hexagonal in its high-symmetry form. In experimental cordierite, this
could be due to external stresses, defects, finite-size effects and edge effects in the sample. In
the computer simulation, edge and finite-size effects will cause the symmetry reduction. The
free-energy expression for a non-uniform distribution is therefore given by

G′ =
∫ [

1

2
A1q
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C1q

4
1 + γ1

(
∂q1

∂x

)2

+
1

2
A2q

2
2 +

1

4
C1q

4
2 + γ2

(
∂q2

∂x

)2

+
1

2
C2q
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1q
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]
dx.

(29)

We may now use the calculus of variations to write PDEs for the order parameters as the system
approaches its minimum free energy:

∂q1

∂t
= −δG

′

δq1
= γ1

∂2q1

∂x2
− A1q1− C1q

3
1 − C2q1q

2
2

∂q2

∂t
= −δG

′

δq2
= γ2

∂2q2

∂x2
− A2q2 − C1q

3
2 − C2q

2
1q2

(30)

with the boundary conditions[
∂q1

∂x

]
x=±∞

= 0[
∂q2

∂x

]
x=±∞

= 0.

(31)

We now proceed to solve these equations numerically using an Euler method. The sample is
divided into grid points and the derivatives in equation (30) are written using finite differences.
C1 is taken to be 1 andC2 is 0.9 (soC2 is less than but close toC1 as required). From
equation (27), this givesA0

1 = −0.975 andA0
2 = −0.925 atT = 0.

BothA1 andA2 vary with temperature as

A1 = A′1(T − Tc) = A0
1(1− T/Tc)

A2 = A′2(T − Tc) = A0
2(1− T/Tc)

(32)

so the ratioA1/A2 = A0
1/A

0
2 is constantly equal to 39/37. In the computer simulation, we use

the values ofA1 andA2 given in table 2.

Table 2. Values ofA1 andA2 used in the simulation.

A1 −0.975 −0.800 −0.600 −0.400 −0.200 −0.100
A2 −0.925 −0.759 −0.569 −0.379 −0.190 −0.095

Finally, we must choose values of the Ginzburg coefficients,γ1 andγ2. The parameter
which varies as a result of the formation of a sandwich wall but which is fixed in a strain wall
is q2. Therefore in order to encourage the formation of a sandwich wall we must setγ2 < γ1.
Physically this means that topological walls form more readily than strain walls which is indeed



4760 J F Blackburn and E K HSalje

observed to be the case in the computer simulations of the atomistic model. We therefore set
γ1 = 1 andγ2 = 0.2. At higher values ofγ2 the sandwich wall does not form.

The initial configuration used in the simulation was a hyperbolic tangent function forq1

and a Gaussian peak forq2 inside the wall. Figure 8 shows the final, converged distributions
of the order parameters for the differentA-coefficients listed above. In each case, the program
was run until the free energy had reached its minimum to five decimal places and the order
parameter plots had converged to those shown in the figure.
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Figure 8. Final (converged) order parameter plots at different temperatures. The expected sandwich
wall is stable untilA1 = −0.4 but then changes into another form at higher temperatures (see the
text).
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We see that the choice of parameters does indeed giveQ = (±1, 0) in the bulk at
T = 0, A1 = −0.975 and there is a peak inQ2 at the sandwich wall. IfQ2 were set at zero,
then there would be no coupling and theQ1-curve would be a hyperbolic tangent function with
width∝1/(Tc − T ). In theT = 0 solution, however,Q1 is considerably distorted away from
such a curve by the high value ofQ2 in the wall. In factQ2 almost reaches its saturated value
of 1. Rather than being Gaussian shaped, theQ2-peak has a rounded tip and there is a dip in
Q2 at its base.

As temperature is increased, both order parameter maximum values decrease but their
widths remain approximately constant. The value ofQ2 in the bulk (away from the wall)
increases somewhat. Bearing in mind thatq2 = (1/2)(3Q2− 1), it can be seen that the strain
componente11 ∝ q2 continues to change sign inside the wall as expected. However, between
A1 = −0.4 and−0.2, a phase transition occurs above which the sandwich wall takes on a
new profile. In this latter configuration,Q1 is much closer to the expected hyperbolic tangent
profile and its width does change with temperature.Q2 is much flatter and less sharp and
resembles a Gaussian distribution. Figure 9 shows the time evolution of the system as it moves
away from its initial configuration and adopts that shown in figure 8.

Returning to figure 8, we observe that, atA1 = −0, 2,−0.1,Q2 is above 1/3 both inside
and outside the wall, indicating thatq2 and hence alsoe11 do not change sign as we move
across the wall. Certainly a configuration whereby three domains are placed together without
interacting with each other should havee11 changing sign like this:−1/2, 1,−1/2. Although
such a strain configuration is observed at low temperatures, it appears that the more rapid
thermal fluctuation at high temperatures causes the system to escape from such a configuration
and adopt a new state withe11 positive in the bulk and becomingmorepositive in the wall. So
the strain component is not even attempting to change its sign but doing the opposite. This
configuration still hase12 = 0 inside the wall, however: it is just that the direction of the
stretching and contraction in the wall have now reversed.

Bulk values ofQ1 simply decrease with temperature to zero atT = Tc, while the bulk
value ofQ2 first increases towards its infinite-temperature limit of 1/3, then jumps above 1/3
as the transition point inherent in figure 8 is passed, then decreases to 1/3 with further increases
of temperature. Trajectories ofQ1 versusQ2 at these temperatures are shown in figure 10.

These sandwich walls are examples ofchiral walls, so called because the order parameter
Q rotates as we move through the wall. The direction of rotation indicates the chirality of the
wall. In equation (19), the free energy depends only on thesquaresof the order parametersq1

andq2, so the sign of the order parameters is irrelevant. Houchmandzadehet al [7] described
how this would lead to degeneracy between positive and negative chiral walls. However, in
our system the order parameters are linked to the strain components via equation (22), so the
signs ofq1 andq2 are significant. For example, if (atT = 0) we again allowedq1 to go from√

3/2 to−√3/2 alongx (as in figure 7) but hadq2 going as +1/2,−1, +1/2, the signs ofe11

would change producing strains:

e

( 1/2
√

3/2 0√
3/2 −1/2 0
0 0 0

)
e

( 1/2 −√3/2 0
−√3/2 −1/2 0

0 0 0

)
(33)

in the bulk (outside the sandwich wall). However, only the strains in equation (21) are energy
allowed in the bulk, ande is fixed by the strengths of the interactions between the atoms.
Therefore the two types of chirality are not degenerate in our system and the chirality of
figure 10 gives the energy minimum. The fact that the GL equations shows the chiralities to
be degenerate is due to the approximations involved in formulating these equations.
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Figure 9. Time evolution of order parameters atA1 = −0.2. At this temperature the system moves
away from the expected strain configuration and adopts a different strain inside the wall (see the
text). The sequence is from left to right and top to bottom.

5.2. Atomistic simulation

We now calculate wall trajectories for the full atomistic simulation. The system is set up
initially with the configuration shown in figure 3 (i.e. with a single sandwich wall) and run at
several temperatures. The order parametersQ1 andQ2 are calculated for each T2 ring from
equations (22) and an average is taken over horizontal rows to yieldQ1(x) andQ2(x). Notice



Sandwich domain walls in cordierite 4763

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

Q
2

Q1

A1=-0.975
A1=-0.800
A1=-0.600
A1=-0.400
A1=-0.200
A1=-0.100

Figure 10. Q1–Q2 trajectories for a variety of temperatures (i.e. values ofA1 andA2). The
parameterQ goes from right to left in each case.

that although theQ-values for each ring are fixed at one of three values, the functionsQ1(x)

andQ2(x) can vary smoothly due to the averaging process. Walls are locally sharp (we are
either in one domain or another with no in-between state) but are globally smooth when many
ring spins are averaged in this way.

In order to improve the statistics, the order parameters were also averaged over Monte
Carlo steps as the simulation was run. Each simulation was run for 1000 MCSPS. The results
are shown in figure 11 which also shows representative snapshots at the various temperatures
after thermal equilibrium has been reached.

At low temperatures,T < 2 (with Tc = 4 from figure 5), the system just stays at the
initial configuration with all Monte Carlo rotations of Al pairs being rejected. This clearly
shows that the topological walls are entirely stable in this system as expected from their spont-
aneous appearance in figure 6. However, byT = 2 there is some observed fluctuation and, as
expected, the order parameters round off to form an approximate hyperbolic tangent function
of Q1. Q2 remains at zero outside the wall as required, but peaks inside the wall. We notice
however that the peak is rather small compared to that of the Landau theory results in figure 8.
Looking at a representative snapshot of the ring spin configuration, we see that the amount of
type 3 wetting along the wall is indeed rather small and much off it is near the edges of the
sample. As the temperature is increased towardsTc, the bulk value ofQ1 decreases towards
zero and the bulk value ofQ2 increases towards 1/3 as expected. Perhaps because of the small
Q2-peak here, the order parameter curves seem to more closely resemble hyperbolic tangent
and Gaussian curves than in the Landau theory simulation and their widths clearly increase
with temperature. This is reasonable because the hyperbolic tangent curve is expected in the
limit asQ2→ 0. By T = 4,Q1 andQ2 are close to their infinite-temperature values but the
peak inQ2 is still present. The order parameters retain rather high values at the edges of the
sample due to edge effects.

The small size of theQ2-peak may be due to cordierite’s aggressive coarsening tendency
which results in small domains being eaten up by nearby larger ones. Thus, there is a
competition between two processes: type 3 ring spins forming in the wall in order to give
rise to topological walls; and these spins turning back into type 1 and type 2 spins in order to
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Figure 11. Averaged order parameter distributions for the full, atomistic model at various
temperatures. Representative ring spin snapshots are also shown at each temperature.

join with the two large domains. Indeed there appear to be two regimes: at low temperatures,
the type 3 sandwich filling is a stable domain, whereas atT > 2, as shown in figure 11,
the type 3 ring spins form a thin wetting layer between two domains (type 1 and 2). This
latter effect is reminiscent of surface segregation whereby a third species type can nucleate
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preferentially at the interface between the other two species [18–25].
The phase transition observed in the Landau simulation (betweenA1 = −0.4 and−0.2)

is not observed here, since the ring spin values rather than the strains are averaged to give these
plots. A strain profile was plotted corresponding to the spin configuration atT = 2 in figure 11
and gave the expected strains (withe11/e going as−1/2, 1,−1/2). At higher temperatures, the
rapid fluctuations make it computationally impossible to calculate strain profiles sufficiently
accurately, so this phase transition cannot be directly confirmed here.

6. Conclusions

Cordierite has unusually low anisotropy energies and a low spontaneous strain. Therefore
other interactions between ordering atoms become important, including local interactions
between cordierite’s characteristic sixfold rings. This latter process gives rise the formation of
topological walls as well as the expected strain walls and there is a competition between these
two wall types. A compromise ‘sandwich wall’ which consists of both strain and topological
walls is therefore a low-energy solution. Such a wall is shown to be stable by using both
symmetry-adapted Ginzburg–Landau theory and our atomistic model. Plots of the order
parameter at low temperatures show the expected variation in strains between the three different
domains which comprise the sandwich wall. However, at higher temperatures, the GL theory
yields a wall with the ‘filling’ in the sandwich being stretched in the other direction to that of the
stretching which occurs at low temperatures (the shear strain remains at zero). The atomistic
simulation is unable to confirm this last prediction because of poor statistics. However, the
mapping between the two simulations at low temperatures is sufficiently convincing to make
this latter prediction seem plausible.

The exact distribution of the sandwich filling is interesting and varies with temperature
from a well defined slab at low temperature to a thin wetting layer at higher temperatures more
reminiscent of surface segregation phenomena.

The sandwich wall is a result of the competition between two wall types and also
cordierite’s unusual triple-domain structure. Most other ferroelastics have only two domains
and so cannot support a sandwich wall.
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